Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Biochem ; 115: 22-32, 2023 May.
Article in English | MEDLINE | ID: covidwho-2313796

ABSTRACT

Recent studies evaluating the preanalytical factors that impact the outcome of nucleic-acid based methods for the confirmation of SARS-CoV-2 have illuminated the importance of identifying variables that promoted accurate testing, while using scarce resources efficiently. The majority of laboratory errors occur in the preanalytical phase. While there are many resources identifying and describing mechanisms for main laboratory testing on automated platforms, there are fewer comprehensive resources for understanding important preanalytical and environmental factors that affect accurate molecular diagnostic testing of infectious diseases. This review identifies evidence-based factors that have been documented to impact the outcome of nucleic acid-based molecular techniques for the diagnosis of infectious diseases.


Subject(s)
COVID-19 , Clinical Laboratory Techniques , Humans , Clinical Laboratory Techniques/methods , Specimen Handling , COVID-19/diagnosis , SARS-CoV-2 , Pre-Analytical Phase , COVID-19 Testing
2.
Clin Chem Lab Med ; 61(8): 1511-1517, 2023 Jul 26.
Article in English | MEDLINE | ID: covidwho-2262650

ABSTRACT

OBJECTIVES: To evaluate pre-analytical challenges related to high-volume central laboratory SARS-CoV-2 antigen testing with a prototype qualitative SARS-CoV-2 antigen immunoassay run on the automated Abbott ARCHITECT instrument. METHODS: Contrived positive and negative specimens and de-identified nasal and nasopharyngeal specimens in transport media were used to evaluate specimen and reagent on-board stability, assay analytical performance and interference, and clinical performance. RESULTS: TCID50/mL values were similar for specimens in various transport media. Inactivated positive clinical specimens and viral lysate (USA-WA1/2020) were positive on the prototype immunoassay. Within-laboratory imprecision was ≤0.10 SD (<1.00 S/C) with a ≤10% CV (≥1.00 S/C). Assay reagents were stable on board the instrument for 14 days. No high-dose hook effect was observed with a SARS-CoV-2 stock of Ct 13.0 (RLU>1.0 × 106). No interference was observed from mucin, whole blood, 12 drugs, and more than 20 cross-reactants. While specimen stability was limited at room temperature for specimens with or without viral inactivation, a single freeze/thaw cycle or long-term storage (>30 days) at -20 °C did not adversely impact specimen stability or assay performance. Specificity of the prototype SARS-CoV-2 antigen immunoassay was ≥98.5% and sensitivity was ≥89.5% across two ARCHITECT instruments. Assay sensitivity was inversely correlated with Ct and was similar to that reported for the Roche Elecsys® SARS-CoV-2 Ag immunoassay. CONCLUSIONS: The prototype SARS-CoV-2 antigen ARCHITECT immunoassay is sensitive and specific for detection of SARS-CoV-2 in nasal and nasopharyngeal specimens. Endogenous proteases in mucus may degrade the target antigen, which limits specimen storage and transport times and complicates assay workflow.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Sensitivity and Specificity , COVID-19 Testing , Immunoassay
3.
Clin Chim Acta ; 525: 54-61, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1568543

ABSTRACT

INTRODUCTION: During the recent SARS-CoV-2 pandemic, circulating calprotectin (cCLP) gained interest as biomarker to predict the severity of COVID-19. We aimed to investigate the prognostic value of cCLP measured in serum, heparin, EDTA and citrate plasma. MATERIALS AND METHODS: COVID-19 patients were prospectively included, in parallel with two SARS-CoV-2 negative control populations. The prognostic value of cCLP was compared with IL-6, CRP, LDH, procalcitonin, and the 4C-mortality score by AUROC analysis. RESULTS: For the 136 COVID-19 patients, cCLP levels were higher compared to the respective control populations, with significantly higher cCLP levels in serum and heparin than in EDTA or citrate. Higher cCLP levels were obtained for COVID-19 patients with i) severe/critical illness (n = 70), ii) ICU admission (n = 66) and iii) need for mechanical ventilation/ECMO (n = 25), but iv) not in patients who deceased within 30 days (n = 41). The highest discriminatory power (AUC [95% CI]) for each defined outcome was i) CRP (0.835 [0.755-0.914]); ii) EDTA cCLP (0.780 [0.688-0.873]); iii) EDTA cCLP (0.842 [0.758-0.925]) and iv) the 4C-mortality score (0.713 [0.608-0.818]). CONCLUSION: Measuring cCLP in COVID-19 patients helps the clinician to predict the clinical course of COVID-19. The discriminatory power of EDTA and citrate plasma cCLP levels often outperforms heparin plasma cCLP levels.


Subject(s)
COVID-19 , Heparin , Citrates , Citric Acid , Edetic Acid , Humans , Leukocyte L1 Antigen Complex , Prognosis , SARS-CoV-2
4.
Biomark Med ; 15(12): 987-997, 2021 08.
Article in English | MEDLINE | ID: covidwho-1320567

ABSTRACT

Aim: We investigated the effect of pre-analytical sample handling variations on coronavirus disease 2019-relevant circulating cytokine levels IFN-γ, IL-10, IL-12p70, IL-17A, IL-6 and TNF-α. Materials & methods: We collected blood in different collection tubes (ethylenediaminetetraacetic acid, sodium citrate, lithium heparin, serum), and subjected ethylenediaminetetraacetic acid plasma to among others increasing delays in centrifugation or -80°C storage. Six subjects were included in each experimental condition. Cytokine levels were measured in these samples using the Simoa Cytokine 6-plex kit. Results: Different tube types resulted in different blood cytokine levels. IL-17A and IL-6 levels declined with 3 h centrifugation delay. IFN-γ levels declined with 24 h postcentrifugation storage delay. IL-17A levels declined with 2-week storage delay. Conclusion: It is recommended to centrifuge tubes quickly following collection, for accurate cytokine measurement.


Subject(s)
Biological Specimen Banks/standards , COVID-19/blood , Cytokines/blood , Quality Control , SARS-CoV-2/metabolism , Specimen Handling/standards , Adult , Female , Humans , Male , Middle Aged
6.
Biochem Med (Zagreb) ; 30(3): 030403, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-874945

ABSTRACT

To fight the virus SARS-CoV-2 spread to Europe from China and to give support to the collapsed public health system, the Spanish Health Authorities developed a field hospital located in the facilities of Madrid exhibition centre (IFEMA) to admit and treat patients diagnosed with SARS-CoV-2 infectious disease (COVID-19). The Department of Laboratory Medicine of La Paz University Hospital in Madrid (LMD-HULP) was designated to provide laboratory services. Due to the emergency, the IFEMA field hospital had to be prepared for patient admission in less than 1 week and the laboratory professionals had to collaborate in a multidisciplinary group to assure that resources were available to start on time. The LMD-HULP participated together with the managers in the design of the tests portfolio and the integration of the healthcare information systems (IS) (hospital IS, laboratory IS and POCT management system). Laboratorians developed a strategy to quickly train clinicians and nurses on test requests, sample collection procedures and management/handling of the POCT blood gas analyser both by written materials and training videos. The IFEMA´s preanalytical unit managed 3782 requests, and more than 11,000 samples from March 27th to April 30th. Furthermore, 1151 samples were measured by blood gas analysers. In conclusion, laboratory professionals must be resilient and have to respond timely in emergencies as this pandemic. The lab's personnel selection, design and monitoring indicators to maintain and further improve the quality and value of laboratory services is crucial to support medical decision making and provide better patient care.


Subject(s)
Betacoronavirus , Coronavirus Infections , Mobile Health Units/organization & administration , Pandemics , Pneumonia, Viral , COVID-19 , Cities , Clinical Laboratory Information Systems/organization & administration , Coronavirus Infections/epidemiology , Delivery of Health Care , Health Services Needs and Demand , Hospital Bed Capacity , Hospital Information Systems/organization & administration , Hospitals, University/organization & administration , Humans , Laboratories, Hospital/organization & administration , Personnel, Hospital/education , Pneumonia, Viral/epidemiology , Point-of-Care Testing/organization & administration , Quality Assurance, Health Care/organization & administration , SARS-CoV-2 , Spain , Specimen Handling
7.
Diagnostics (Basel) ; 10(8)2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-717706

ABSTRACT

While lateral flow test formats can be utilized with whole blood and low sample volumes, their diagnostic characteristics are inferior to immunoassays based on chemiluminescence immunoassay (CLIA) or enzyme-linked immunosorbent assay (ELISA) technology. CLIAs and ELISAs can be automated to a high degree but commonly require larger serum or plasma volumes for sample processing. We addressed the suitability of EDTA-anticoagulated whole blood as an alternative sample material for antibody testing against SARS-CoV-2 by electro-CLIA (ECLIA; Roche, Rotkreuz, Switzerland) and ELISA (IgG and IgA; Euroimmun, Germany). Simultaneously drawn venous serum and EDTA-anticoagulated whole blood samples from 223 individuals were included. Correction of the whole blood results for hematocrit led to a good agreement with the serum results for weakly to moderately positive antibody signals. In receiver-operating characteristic curve analysis, all three assays displayed comparable diagnostic accuracy (area under the curve (AUC)) using corrected whole blood and serum (AUCs: 0.97 for ECLIA and IgG ELISA; 0.84 for IgA ELISA). In conclusion, our results suggest that the investigated assays can reliably detect antibodies against SARS-CoV-2 in hemolyzed whole blood anticoagulated with EDTA. Correction of these results for hematocrit is suggested. This study demonstrates that the automated processing of whole blood for identification of SARS-CoV-2 antibodies with common ECLIA and ELISA methods is accurate and feasible.

SELECTION OF CITATIONS
SEARCH DETAIL